Thermodynamic and Kinetic Analysis of Cementitious Reactions in Lime-treated Clays

Tasneem Ahmadullah and Maria Chrysochoou Department of Civil and Environmental Engineering University of Connecticut

This project has been supported by NSF project number 1740554: "A Bottom-up Approach to Design of Chemical Soil Stabilization Using Thermodynamic Modeling"

Background and Motivation

Surface view of a near vertical Bentonite layer. The layer heaved with a differential displacement of 3 inches within 24 hours after a rainstorm at this construction site (Source: Colorado Geological Survey))

- Damage caused by clay swelling in subgrade costs \$1 billion every year in the US alone
- Most common treatment method is addition of lime and cement or cementitious materials.
- The mix design is done mostly empirically using short term (28-day) strength tests.

Clay stabilization mechanisms – *qualitative understanding*

Solid (Clay Mineral) + Water + Stabilizer (CaO)

Lime or cement forms a gel of silica hydrate which gives clay structure strength (source: Kavak & Baykal 2012)

Clay stabilization mechanisms – *quantitative understanding*

Chrysochoou (2014) Kaolinite XRD and UCS

Maubec et al. (2017) Kaolinite and Ca-bentonite TGA and UCS

Fig. 6. Correlation between average UCS and (a) kaolinite content and average UCS; (b) amorphous content

Fig. 8. Evolution of portlandite, hydrates weight losses and unconfined compressive strength with time at 20 °C and 50 °C for the kaolinitic material treated with 10% of lim

De Windt et al. (2014) Ca-bentonite Modeling and NMR, TGA, XRD

Fig. 1. Evolution with time of the primary phases of bentonite and the pozzolanic phases obtained by modeling and ²⁹Si NMR analysis at 20 °C; symbols correspond to experimental data (square \blacksquare = montmorillonite, triangle $\triangle = C(-A)$ -S-H, empty circle $\bigcirc = K$ -feldspars and solid circle \bullet = cristobalite).

Objectives

Clay mineral properties

Clay	Na-Bentonite	K90
Source	Performance Minerals	KaMin LLC
Liquid Limit	384	37
Plastic Limit	68	24
Percent <2 μm	75	85
Percent <10 µm	85	100
Percent <75 µm	90	100
Mineralogy	Na-montmorillonite (~80%), Na- clinoptilolite, quartz, cristobalite, anorthite, muscovite	kaolinite

Methodology

Pore water extraction

Custom-made pore water extraction device for clay

Squeezed	Extraction	Extraction	Moisture	Extraction
Material	Pressure	Duration (h)	content (%)	Efficiency
	(MPa)			(%)
B-8SL	690-1379	5	40	4.2
K90-5SL	690-1000	2	30	56

UCS results

Kaolinite + 5% Lime

Solution results - pH

TGA Analysis

Kaolinite

XRD Analysis (Kaolinite)

- The XRD analyses were done using 20% corundum (Al_2O_3) as internal standard.
- The maximum decomposition of kaolinite was 5%
- Portlandite (Ca(OH)₂) progressively turns into calcite CaCO₃ as a result of carbonation.

Conclusions

Kaolinite

- Data collected so far agrees with kaolinite literature data.
- Kaolinite has not reached equilibrium within the shown 180 days, needs further study.
- Spectroscopic data indicates that carbonation of hydrated lime is the primary reaction, with little evidence for substantial CSH formation. This correlates with limited strength gain over time.

Na-Bentonite

- Na-Bentonite reacts and gains strength faster than kaolinite reaching a plateau by 120 days.
- Compared to literature, this behavior is different than Cabentonite, which shows continued reaction up to 90 days.
- Lime consumption is fast, decreasing the pH in the same time frame and forming hydration products (CSH) as confirmed by spectroscopy.